Vladimir I. Bakhmutov,*,† Alexey B. Vymenits,† and Vladimir V. Grushin[‡]

Institute of Organo-Element Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow, Russia, and Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Received March 23, 1994

Stereoelectronic control of the stability of transition metal dihydrogen complexes¹ was recently reported² for the interaction between H_2 and $[(i-Pr_3P)_2Ir(H)Cl_2]$ (1) in solution. This reaction

leads to a pair of the isomeric dihydrogen complexes, [(i-Pr₃P)₂- $Ir(H)(H_2)Cl_2$, with trans and cis arrangements of the H and H₂ ligands,^{2,3} respectively.

Complex 1 reacts rapidly with H₂ at 25 °C to give the relatively labile trans adduct A with a short H-H distance, whereas another, slower reaction in the same system results in the quite stable cis complex **B** with a remarkably elongated

L = i-Pr₃P; X = Cl, Br

H-H bond (1.11 Å). Although the *trans* complex A (X = Cl) is too labile for isolation, it was reliably characterized in solution. Being much more stable, the *cis* isomer **B** (X = Cl) was successfully isolated in excellent yield and characterized in solution and in the solid state by a single-crystal neutron diffraction study.^{2,3} The influence of the *cis* interaction between

- (1) For recent reviews see: (a) Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155. (b) Heinekey, D. M.; Oldham, W. J. Chem. Rev. 1993, 93, 913.
- Albinati, A.; Bakhmutov, V. I.; Caulton, K. G.; Clot, E.; Eckert, J.; (2)Eisenstein, O.; Gusev, D. G.; Grushin, V. V.; Hauger, B. E.; Klooster, W. T.; Koetzle, T. F.; McMullan, R. K.; O'Loughlin, T. J.; Pelissier, M.; Ricci, J. S.; Sigalas, M. P.; Vymenits, A. B. J. Am. Chem. Soc. 1993, 115, 7300.
- Gusev, D. G.; Bakhmutov, V. I.; Grushin, V. V.; Vol'pin, M. E. Inorg. (3)Chim. Acta 1990, 177, 115.

H and H₂ ligands on the stability and structure of nonclassical polyhydrides of iron was recently studied by ab initio methods.⁴

It seemed conceivable that the rare phenomenon of coexistence of a pair of n^2 -H₂ complexes isomeric by virtue of stereochemistry at the metal center could be observed in the reaction of the isostructural monohydride [(*i*-Pr₃P)₂Ir(H)Br₂] (2) with hydrogen. In the present note, we report that the interaction between 2 and H₂ in solution indeed leads to the two isomeric bromo hydrido complexes of A- and B-type structures.

Complex 2 was prepared by treatment of its chloro analog 1 with anhydrous AlBr3 in dibromomethane and characterized by elemental analysis and IR and NMR spectroscopy. The 300 K ¹H NMR spectrum of 2 in toluene- d_8 exhibits a well-resolved triplet at -48.5 ppm with ${}^{2}J(P-H) = 12.2$ Hz (IrH) and two multiplets at 3.4 ppm (CH) and 1.4 ppm (dd, CH₃, ${}^{3}J(P-H) =$ J(H-H) = 7 Hz), due to the phosphine ligands. A singlet at 26.1 ppm is observed in the ${}^{31}P{}^{1}H$ NMR spectrum of 1. The collected data are consistent with the square pyramidal geometry of 2, similar to that found earlier⁵⁻⁷ for the dichloro monohydrido complex 1.

For the NMR studies of the reaction between 2 and H_2 , 3 mg of 2 and 0.5 mL of degassed toluene- d_8 were placed in a standard 5-mm NMR tube which was subsequently sealed under hydrogen, in order to provide an excess of H₂ for the reaction system. The 188 K ¹H NMR spectrum of the thus prepared sample showed a singlet for free H₂ at 4.6 ppm, broadened resonances at 2.7 and 1.2 ppm for the *i*-Pr₃P ligand, and two new signals at -11.8 and -10.6 ppm (3.7:1 integral intensity) due to hydrido species 3 and 4, respectively. These broadened hydrido resonances corresponded to the signals at 17.4 and 34.0 ppm (4.9:1) found in the ${}^{31}P{}^{1}H$ NMR spectrum of the sample.

Heating the solution up to 240 K resulted in a reversible (on the NMR time scale) exchange between the resonances at 4.6 and -10.6 ppm. The spin saturation transfers observed for these lines at 210 K provided unambiguous support for the exchange. At 240 K, the IrH signal at -11.8 ppm transformed to a wellresolved triplet with J(H-P) = 7.7 Hz. Unsealing the NMR tube, followed by removal of hydrogen (standard freezepump-thaw technique) and purging with argon, led to the disappearance of both 3 and 4 and formation of a new complex, 5. The spectra of this species contained a triplet resonance at -32.8 ppm (J(H-P) = 12.1 Hz) in the hydride region of the ¹H NMR and a singlet at 54.7 ppm in the ³¹P NMR. The phosphine ligands gave multiplets at 3.55 and 1.45 ppm for the CH and CH₃ protons, respectively. These NMR parameters, along with the integral intensities of the proton resonances, led to the formulation of compound 5 as $[(i-Pr_3P)_2Ir(H)_2Br]$.⁸ The $T_{1\min}$ value of 82 ms (200 MHz) found for the IrH signal of 5 at 190 K is consistent with this formulation.9

Taking into account the spectroscopic behavior of complex 1 in the presence of H_2 under similar conditions,^{2,3} we conclude that the reaction between 2 and H_2 at ambient temperature rapidly gives rise to a ca. 5:1 mixture of cis-[(i-Pr₃P)₂Ir(H)- $(H_2)Br_2$] (3) and $[(i-Pr_3P)_2Ir(H_2)(H)_2Br]$ (4),⁸ according to eqs

Werner, H.; Wolf, J.; Höhn, A. J. Organomet. Chem. 1985, 287, 395. Grushin, V. V.; Vymenits, A. B.; Vol'pin, M. E. J. Organomet. Chem. (7)1990, 382, 185.

(a) Hauger, B. E.; Gusev, D. G.; Caulton, K. G. J. Am. Chem. Soc. (10)1994, 116, 208. (b) Gusev, D. G. Personal communication.

[†] Institute of Organo-Element Compounds.

[‡] University of Ottawa.

⁽⁴⁾ Riehl, J. F.; Pelissier, M.; Eisenstein, O. Inorg. Chem. 1992, 31, 3344.

⁽⁵⁾ Garlaschelli, L.; Khan, S. I.; Bau, R.; Longoni, G.; Koetzle, T. F. J. Am. Chem. Soc. 1985, 107, 7212

⁽⁸⁾ Le-Husebo, T.; Jensen, C. M. Inorg. Chem. 1993, 32, 3797.

⁽⁹⁾ Similar $T_{1\min}$ values were very recently obtained for 5⁸ and a series of highly related complexes $[L_2Ir(H)_2X]$ (L = t-Bu₂(Ph)P, t-Bu₂(Me)P; $X = Cl, Br, I)^{10}$

1-3. Clearly, placing the reaction mixture under vacuum results

$$cis-[(i-Pr_3P)_2Ir(H)(H_2)Br_2] \rightarrow [(i-Pr_3P)_2Ir(H)_2Br] + HBr$$

$$3 = B (X = Br)$$
5
(2)

$$[(i-\Pr_{3}P)_{2}Ir(H)_{2}Br] + H_{2} \rightarrow [(i-\Pr_{3}P)_{2}Ir(H)_{2}(H_{2})Br] \quad (3)$$
5
4

in the formation of 5 via dehydrogenation of 4 and dehydrobromination of 3. That 5 forms upon interaction between 2 and H₂ in solution was confirmed by simultaneously observing of the IrH resonances of 3-5 in the 200 K ¹H NMR spectrum of the sample prepared from 2 and a 1:4 (by volume) mixture of H₂ and argon.

The structural formulation of 3 and 4 as nonclassical hydrides is consistent with the relaxation data obtained (200 MHz). The $T_{1\min}$ (206 K) values of 39 and 16 ms found for the hydrido resonances of 3 and 4, respectively, are in full accord with those previously reported^{2,3} for the corresponding chloro hydrides. For 3, $r_{\rm H-H}$ of 1.08 and 1.36 Å can be calculated for the lower and upper limits of the (H₂) ligand rotation, respectively.^{1a,2} As mentioned above, the ¹H NMR spectra revealed a positional exchange for the free H₂ resonance and the signal of the Ir-(H)₂(H₂) ligands in 4 between 190 and 240 K. This observation clearly demonstrates that the metal-bound hydrogens of 4 are in rapid exchange with free H₂ in solution, thus providing additional evidence for the nonclassical nature of 4. Very recently, Le-Husebo and Jensen⁸ came to similar conclusions concerning complex 4.¹¹

It was shown earlier^{2,3} that complex 1 reacts rapidly with H_2 to yield complex A (X = Cl) with *trans* arrangement of the H and H_2 ligands. The more stable *cis* isomer, **B** (X = Cl), was observed as the product of the second, slower reaction. In this connection, we studied the reaction of 2 with H_2 at low temperature. A frozen, degassed solution of 2 in toluene- d_8 was sealed under H₂ in a 5-mm NMR tube, and the sample was immediately thermostated in the NMR probe at 190 K. Melting the solution led to the observation of a broadened resonance at -16.9 ppm which could be assigned to the H ligand of $trans-[(i-Pr_3P)_2Ir(H)(H_2)Br_2]$ (6 = A (X = Br)). As in the case of the chloro hydride A (X = Cl), the H_2 ligand of the bromo analog, 6, or A (X = Br), was not detectable in the spectrum. In order to support the assignment of the signal at -16.9 ppm to 6, the experiment at 190 K was repeated with HD. As anticipated, an additional triplet resonance at -0.9 ppm with J(H-D) = 32 Hz was observed, indicating the presence of the H_2 structural unit in 6. It was also found that, in the

temperature range 176-207 K, the Ir(HD) T_1 value passes through a minimum of 64 ms (200 MHz, 189 K). From the ratio, $T_{1\min}(\mathbf{H} \cdot \cdot \mathbf{D})/T_{1\min}(\mathbf{H} \cdot \cdot \mathbf{H}) = 17^{12a}$ or 16^{12b} for dipoledipole relaxation, the $T_{1\min}$ value for the (H₂) ligand of **6** was estimated to be 4 ms, which corresponds to a very short H · · · H distance of 0.76 Å for the lower limit and 0.96 Å for the upper limit of the (H_2) ligand rotation.^{1a} Heating the sample to 250 K and cooling it back to 190 K led to a mixture of 3, 4, and 6 in a 1.5:1:2.3 molar ratio, due to the partial isomerization of 6. After the sample was warmed to ambient temperature, only the resonances due to 3 and 4 were observed in the ^{1}H NMR spectrum (190 K), indicating complete conversion of 6. Interestingly, H₂ binding to bromo complex 2 seems to be more facile than the analogous reactions of chloro complex 1 under the same conditions.^{2,3} In addition, the isomerization of A to B is faster when X = Br than when X = Cl. For instance, 3 is formed within minutes when H_2 is introduced to a solution of 2 at 20 °C, whereas the conversion of 1 to **B** (X = Cl) in the presence of hydrogen requires days at ambient temperature or hours at 50 °C.^{2,3} We believe that these effects might be due to the difference in electronegativity between Cl and Br⁸ and to the increase of the multiple-bond character between the metal center and the halide ligands (X—Ir π -donation) upon going from Br to Cl.^{10a,13,14}

In conclusion, this work provides evidence for the coexistence of a pair of isomeric molecular dihydrogen complexes which form when 2 reacts with H₂ in solution. Depending on the conditions, the reaction of 2 can lead to 6 (A, X = Br) and/or 3 (B, X = Br) as the kinetic and thermodynamic products of H₂ binding, respectively. In addition to the similar transformations of 1,^{2,3} these data provide good support for the suggested² concept of stereoelectronic control of the stability of η^2 -H₂ transition metal complexes.

Experimental Section

All NMR data were collected with a Bruker WP-200 spectrometer and a standard temperature unit. The temperature was calibrated by ¹H NMR with a standard methanol sample. The inversion-recovery method (180-TAU-90) was used to determine T_1 relaxation times. The calculations of the relaxation times were performed using the nonlinear three-parameter fitting routine of the spectrometer.

Synthesis of 2. $[(i-Pr_3P)_2Ir(H)Cl_2]^7$ (0.45 g) was added to a solution of anhydrous AlBr₃ (1.1 g) in dry dibromomethane (6 mL), and the mixture was stirred for 20 min. The reaction was quenched with water, and the organic layer was separated from the mixture and evaporated. A benzene solution of the residue was filtered through a silica plug, and the filtrate was evaporated to dryness. The dark crystals were washed with EtOH and dried under vacuum. The yield of analytically and spectroscopically pure 2 was 0.20 g. Anal. Calcd for C₁₈H₄₃Br₂-IrP₂: C, 32.05; H, 6.58; Br, 23.69. Found: C, 32.17; H, 6.67; Br, 23.82. IR, cm⁻¹ (Nujol): 2002 (ν_{Ir-H}).

⁽¹¹⁾ Le-Husebo and Jensen⁸ reported $T_{1\min} = 54$ ms for 4 at 500 MHz, which would correspond to 22 ms at 200 MHz. This value obtained at 213 K⁸ is slightly higher than ours (16 ms; 206 K), probably due to the exchange between 4 and H₂ on the T_1 NMR time scale, established in the present work (see above).

^{(12) (}a) Abragam, A. The Principles of Nuclear Magnetism; Oxford University Press: New York, 1971; Chapter 8. (b) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 4173.

⁽¹³⁾ Poulton, J. T.; Folting, K.; Streib, W. E.; Caulton, K. G. Inorg. Chem. 1992, 31, 3190.

⁽¹⁴⁾ Abu-Hasanayn, F.; Krogh-Jespersen, K.; Goldman, A. S. Inorg. Chem. 1993, 32, 495.